

Solve
$$|5x-3|+2=10$$

isolate the abs. Value
 $|5x-3|=8$
Now Solve
 $5x-3=8$ OR $5x-3=-8$
 $5x=11$
 $x=-1$
Solve \rightarrow Solution $\{-1, \frac{11}{5}\}$

Solve
$$|4x + 3| = |2x - 7|$$

Solve $|4x + 3| = |2x - 7|$ OR $|4x + 3| = -(2x - 7)|$
 $|4x - 2x = -7 - 3|$ $|4x + 3| = -2x + 7|$
 $|2x = -10|$ $|4x + 2x = 7 - 3|$
 $|x = -5|$ $|6x = 4|$
Solvtion Set $|x - 5|$ $|3|$

```
Abs. Value inequality: C>O

|ax+b|<C |ax+b|\leq C

|ax+b|>C |ax+b|\leq C

1) Solve |ax+b|=C

2) Place Answers on the number line System

3) Shade between for |ax+b|<C , |ax+b|\leq C

4) Shade outside for |ax+b|>C , |ax+b|\leq C

Always be aware of end points
```

Solve
$$|2\chi - 1| < 5$$
 Shade between $|2\chi - 1| = 5$ $|2\chi - 1| = 5$

Solve
$$|4x+8| \ge |2|$$
 shade outside
Solve $|4x+8| = |2|$
 $|4x+8| = |2|$
 $|4x+8| = -|2|$
 $|4x=20|$
 $|x=1|$
 $|x=-5|$
S.B.N.
 $|x| \propto 5$ or $|x|1$ (- $|\infty|$,-5) U[1, $|\infty|$)

Solve
$$|x+4|-2 \le 2$$

Always isolate abs. Value

 $|x+4| \le 4$ Shade between

Solve $|x+4| = 4$ $|x+4| = 4$ $|x+4| = 4$ $|x+4| = 4$ $|x=0|$

S.B.N. $\{x\}-8 \le x \le 0\}$ I.N. $[-8,0]$

Solve
$$|x-3|+2>5$$

Always isolate abs. Value
 $|x-3|>3$ shade outside

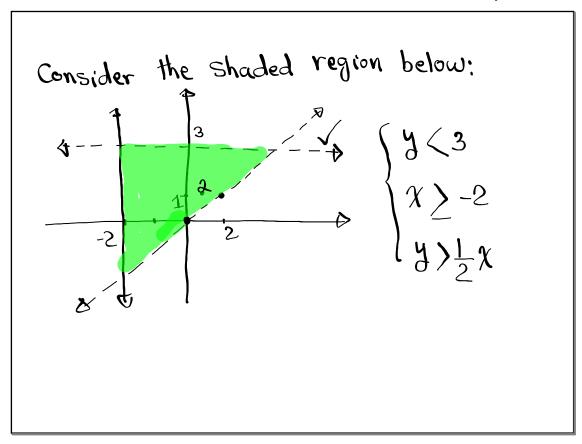
Now Solve $|x-3|=3$ $x-3=3$ $x-3=-3$ $x=6$ $x=0$

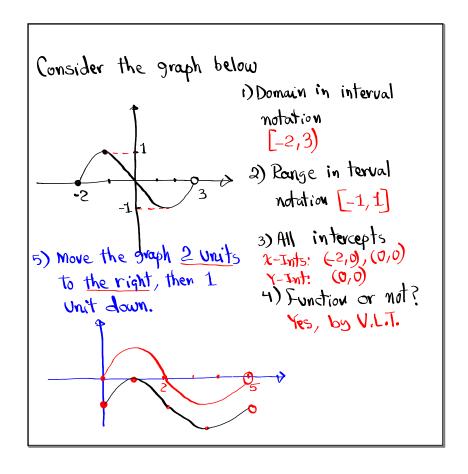
S.B.N. $\{x \mid x < 0 \text{ OR } x > 6\}$

I.N. $(-\infty,0) \cup (6,\infty)$

Solve
$$-3 < -2x + 5 \le 9$$

Tsolate x in the middle.


 $-3 - 5 < -2x \le 9 - 5$
 $-8 < -2x \le 4$
 $\frac{-8}{-2} > \frac{-2}{-2}x \ge \frac{4}{-2}$
 $4 > x \ge -2 \Rightarrow -2 \le x < 4$


S.B.N. $\{x\} - 2 \le x < 4\}$

T.N. $\{-2, 4\}$

Caraph $\{x\} - 2 \le x < 4\}$

Graph & Shade
$$\begin{cases} f(x) \ge -2 \\ g(x) < \frac{3}{4}x + 2 \end{cases} \quad \begin{cases} y \ge -2 \\ y < \frac{3}{4}x + 2 \end{cases}$$

$$S(x) = \begin{cases} -\frac{3}{4}\chi - 3 & \text{if } \chi \neq 0 \\ \frac{1}{4}\chi^2 - 1 & \text{if } \chi \geq 0 \\ 1)S(-4) = \frac{3}{4}(-4) - 3 & \text{2) } S(2) = \frac{1}{4}(2)^2 - 1 \\ = \frac{3}{4}(-1) - \frac{3}{$$

$$f(x) = \frac{x^{2} - 16}{x^{2} - 4}$$
Find
$$f(-4) = \frac{(-4)^{2} + 6}{(-4)^{2} + 4} = \frac{16 - 16}{16 - 4}$$

$$f(-2) = \frac{(-2)^{2} + 4}{(-2)^{2} + 4} = \frac{(-2)^{2} + 4}{(-2)^{2} + 4}$$
Unde Sined
$$f(x) = \frac{x^{2} - 16}{x^{2} - 4}$$

$$f(x) = \frac{(-2)^{2} + 4}{16 - 4}$$

$$f(x) = \frac{(-2$$

$$S(x) = 2x + 5 \qquad \Im(x) = 2x - 5$$

$$Sind$$
1) $(5+9)(x)$

$$= S(x) + \Im(x)$$

$$= S(x) + \Im(x)$$

$$= 2x + 5 + 2x - 5 = 4x$$

$$= 2x + 5 - 2x + 5$$
3) $(5 \cdot \Im(x) = 2x + 5 - 2x + 5$

$$= 2x + 5 - 2x + 5$$

$$= 4x^2 - 10x + 10x - 25 = 4x^2 - 25$$

Green
$$A(0,-6)$$
, $B(8,0)$

Draw \overline{AB}

Sind its midpoint

 $M(\frac{0+8}{2}, \frac{-6+0}{2}) = M(4-3)$

Find its length.

Sind its slope

 $M = \frac{-6-0}{0-8} = \frac{-6+3}{4}$
 $M = \frac{-6-0}{0-8} = \frac{-6+3}{4}$

Factor Completely

1)
$$4x - 20 = 4x - 4.5 = 4(x - 5)$$

a)
$$\chi^2 - 10\chi = \chi \cdot \chi - 10 \cdot \chi = \chi(\chi - 10)$$

3)
$$\chi^3 - 100 \chi = \chi \chi \chi - 100 \chi$$

= $\chi(\chi^2 - 100) = \chi(\chi + 10)(\chi - 10)$

Class QZ 11

Solve
$$|5x + 10| = 20$$
 $5x + 10 = 20$ OR $5x + 10 = -20$
 $5x = 10$ $5x = -30$
 $x = 2$
 $x = -30$